Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influence of genotype and nutrition on survival and metabolism of starving yeast.

Identifieur interne : 001622 ( Main/Exploration ); précédent : 001621; suivant : 001623

Influence of genotype and nutrition on survival and metabolism of starving yeast.

Auteurs : Viktor M. Boer [États-Unis] ; Sasan Amini ; David Botstein

Source :

RBID : pubmed:18456835

Descripteurs français

English descriptors

Abstract

Starvation of yeast cultures limited by auxotrophic requirements results in glucose wasting and failure to achieve prompt cell-cycle arrest when compared with starvation for basic natural nutrients like phosphate or sulfate. We measured the survival of yeast auxotrophs upon starvation for different nutrients and found substantial differences: When deprived of leucine or uracil, viability declined exponentially with a half-life of <2 days, whereas when the same strains were deprived of phosphate or sulfate, the half-life was approximately 10 days. The survival rates of nongrowing auxotrophs deprived of uracil or leucine depended on the carbon source available during starvation, but were independent of the carbon source during prior growth. We performed an enrichment procedure for mutants that suppress lethality during auxotrophy starvation. We repeatedly found loss-of-function mutations in a number of functionally related genes. Mutations in PPM1, which methylates protein phosphatase 2A, and target of rapamycin (TOR1) were characterized further. Deletion of PPM1 almost completely suppressed the rapid lethality and substantially suppressed glucose wasting during starvation for leucine or uracil. Suppression by a deletion of TOR1 was less complete. We suggest that, similar to the Warburg effect observed in tumor cells, starving yeast auxotrophs wastes glucose as a consequence of the failure of conserved growth control pathways. Furthermore, we suggest that our results on condition-dependent chronological lifespan have important implications for the interpretation and design of studies on chronological aging.

DOI: 10.1073/pnas.0802601105
PubMed: 18456835
PubMed Central: PMC2383937


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Influence of genotype and nutrition on survival and metabolism of starving yeast.</title>
<author>
<name sortKey="Boer, Viktor M" sort="Boer, Viktor M" uniqKey="Boer V" first="Viktor M" last="Boer">Viktor M. Boer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ 08544</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">Princeton (New Jersey)</settlement>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Amini, Sasan" sort="Amini, Sasan" uniqKey="Amini S" first="Sasan" last="Amini">Sasan Amini</name>
</author>
<author>
<name sortKey="Botstein, David" sort="Botstein, David" uniqKey="Botstein D" first="David" last="Botstein">David Botstein</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18456835</idno>
<idno type="pmid">18456835</idno>
<idno type="doi">10.1073/pnas.0802601105</idno>
<idno type="pmc">PMC2383937</idno>
<idno type="wicri:Area/Main/Corpus">001614</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001614</idno>
<idno type="wicri:Area/Main/Curation">001614</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001614</idno>
<idno type="wicri:Area/Main/Exploration">001614</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Influence of genotype and nutrition on survival and metabolism of starving yeast.</title>
<author>
<name sortKey="Boer, Viktor M" sort="Boer, Viktor M" uniqKey="Boer V" first="Viktor M" last="Boer">Viktor M. Boer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ 08544</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">Princeton (New Jersey)</settlement>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Amini, Sasan" sort="Amini, Sasan" uniqKey="Amini S" first="Sasan" last="Amini">Sasan Amini</name>
</author>
<author>
<name sortKey="Botstein, David" sort="Botstein, David" uniqKey="Botstein D" first="David" last="Botstein">David Botstein</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromosomes, Fungal (MeSH)</term>
<term>Colony Count, Microbial (MeSH)</term>
<term>Culture Media (MeSH)</term>
<term>Food (MeSH)</term>
<term>Gene Regulatory Networks (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Glucose (metabolism)</term>
<term>Leucine (deficiency)</term>
<term>Microbial Viability (MeSH)</term>
<term>Mutation (genetics)</term>
<term>Nutritional Physiological Phenomena (MeSH)</term>
<term>Phosphates (deficiency)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Saccharomyces cerevisiae (isolation & purification)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Uracil (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Aliments (MeSH)</term>
<term>Chromosomes de champignon (MeSH)</term>
<term>Glucose (métabolisme)</term>
<term>Génotype (MeSH)</term>
<term>Leucine (déficit)</term>
<term>Milieux de culture (MeSH)</term>
<term>Mutation (génétique)</term>
<term>Numération de colonies microbiennes (MeSH)</term>
<term>Phosphates (déficit)</term>
<term>Phénomènes physiologiques nutritionnels (MeSH)</term>
<term>Réseaux de régulation génique (MeSH)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (isolement et purification)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Uracile (métabolisme)</term>
<term>Viabilité microbienne (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Leucine</term>
<term>Phosphates</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glucose</term>
<term>Uracil</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Culture Media</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Leucine</term>
<term>Phosphates</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mutation</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Mutation</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glucose</term>
<term>Saccharomyces cerevisiae</term>
<term>Uracile</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromosomes, Fungal</term>
<term>Colony Count, Microbial</term>
<term>Food</term>
<term>Gene Regulatory Networks</term>
<term>Genotype</term>
<term>Microbial Viability</term>
<term>Nutritional Physiological Phenomena</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Aliments</term>
<term>Chromosomes de champignon</term>
<term>Génotype</term>
<term>Milieux de culture</term>
<term>Numération de colonies microbiennes</term>
<term>Phénomènes physiologiques nutritionnels</term>
<term>Réseaux de régulation génique</term>
<term>Viabilité microbienne</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Starvation of yeast cultures limited by auxotrophic requirements results in glucose wasting and failure to achieve prompt cell-cycle arrest when compared with starvation for basic natural nutrients like phosphate or sulfate. We measured the survival of yeast auxotrophs upon starvation for different nutrients and found substantial differences: When deprived of leucine or uracil, viability declined exponentially with a half-life of <2 days, whereas when the same strains were deprived of phosphate or sulfate, the half-life was approximately 10 days. The survival rates of nongrowing auxotrophs deprived of uracil or leucine depended on the carbon source available during starvation, but were independent of the carbon source during prior growth. We performed an enrichment procedure for mutants that suppress lethality during auxotrophy starvation. We repeatedly found loss-of-function mutations in a number of functionally related genes. Mutations in PPM1, which methylates protein phosphatase 2A, and target of rapamycin (TOR1) were characterized further. Deletion of PPM1 almost completely suppressed the rapid lethality and substantially suppressed glucose wasting during starvation for leucine or uracil. Suppression by a deletion of TOR1 was less complete. We suggest that, similar to the Warburg effect observed in tumor cells, starving yeast auxotrophs wastes glucose as a consequence of the failure of conserved growth control pathways. Furthermore, we suggest that our results on condition-dependent chronological lifespan have important implications for the interpretation and design of studies on chronological aging.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18456835</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>05</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>105</Volume>
<Issue>19</Issue>
<PubDate>
<Year>2008</Year>
<Month>May</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Influence of genotype and nutrition on survival and metabolism of starving yeast.</ArticleTitle>
<Pagination>
<MedlinePgn>6930-5</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.0802601105</ELocationID>
<Abstract>
<AbstractText>Starvation of yeast cultures limited by auxotrophic requirements results in glucose wasting and failure to achieve prompt cell-cycle arrest when compared with starvation for basic natural nutrients like phosphate or sulfate. We measured the survival of yeast auxotrophs upon starvation for different nutrients and found substantial differences: When deprived of leucine or uracil, viability declined exponentially with a half-life of <2 days, whereas when the same strains were deprived of phosphate or sulfate, the half-life was approximately 10 days. The survival rates of nongrowing auxotrophs deprived of uracil or leucine depended on the carbon source available during starvation, but were independent of the carbon source during prior growth. We performed an enrichment procedure for mutants that suppress lethality during auxotrophy starvation. We repeatedly found loss-of-function mutations in a number of functionally related genes. Mutations in PPM1, which methylates protein phosphatase 2A, and target of rapamycin (TOR1) were characterized further. Deletion of PPM1 almost completely suppressed the rapid lethality and substantially suppressed glucose wasting during starvation for leucine or uracil. Suppression by a deletion of TOR1 was less complete. We suggest that, similar to the Warburg effect observed in tumor cells, starving yeast auxotrophs wastes glucose as a consequence of the failure of conserved growth control pathways. Furthermore, we suggest that our results on condition-dependent chronological lifespan have important implications for the interpretation and design of studies on chronological aging.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Boer</LastName>
<ForeName>Viktor M</ForeName>
<Initials>VM</Initials>
<AffiliationInfo>
<Affiliation>Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Amini</LastName>
<ForeName>Sasan</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Botstein</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P50 GM071508</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM046406</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P50 GM-071508</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM-046406</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>05</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003470">Culture Media</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010710">Phosphates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>56HH86ZVCT</RegistryNumber>
<NameOfSubstance UI="D014498">Uracil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GMW67QNF9C</RegistryNumber>
<NameOfSubstance UI="D007930">Leucine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015825" MajorTopicYN="N">Chromosomes, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015169" MajorTopicYN="N">Colony Count, Microbial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003470" MajorTopicYN="N">Culture Media</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005502" MajorTopicYN="N">Food</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="N">Gene Regulatory Networks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007930" MajorTopicYN="N">Leucine</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050296" MajorTopicYN="Y">Microbial Viability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009747" MajorTopicYN="Y">Nutritional Physiological Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010710" MajorTopicYN="N">Phosphates</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014498" MajorTopicYN="N">Uracil</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>5</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18456835</ArticleId>
<ArticleId IdType="pii">0802601105</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.0802601105</ArticleId>
<ArticleId IdType="pmc">PMC2383937</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Biol. 2004 Dec 14;14(23):R1014-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15589139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1956 Feb 24;123(3191):309-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13298683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1993 Jun;57(2):383-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8393130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Nov 1;19(21):5672-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11060018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2007 Jun;13(6):252-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17452018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007;2(3):e322</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17389913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Mar 31;311(5769):1932-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16527929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2004 Dec;7(6):624-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15556035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Apr 2;12(7):588-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11937029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2001 Nov 15;395(2):239-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11697862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Feb;43(4):835-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11929536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1975 May;80(1):23-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1093935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2004 Jun;68(2):187-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15187181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1976 May;73(5):1664-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">775494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Feb;55(3):862-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15661010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Jan 15;20(2):174-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16418483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1988 May;2(5):517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3290050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2005 Nov 14;24(50):7455-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16288292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1958 Jun;18(3):658-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13549697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Jan;19(1):352-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17959824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2006 Feb;23(3):215-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16498698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jan 12;276(2):1570-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Aug 6;285(5429):901-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10436161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Aug 1;10(15):1904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Oct 13;103(2):253-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11057898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Apr 13;292(5515):288-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11292860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Nov;14(11):4342-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14551259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2003 Apr;2(2):73-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12882320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Jul 19;297(5580):395-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12089449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2007 Apr;5(4):265-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17403371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jan 31;278(5):3265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12414795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1973 Dec;116(3):1293-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4127627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(13):R114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16420673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Aug 9;25(15):3546-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16874307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1954 Oct;40(10):885-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16589586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2004 Sep;15(9):4089-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15240820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Dec 21;24(24):4271-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16308562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Jul;173(3):1813-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16624899</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>New Jersey</li>
</region>
<settlement>
<li>Princeton (New Jersey)</li>
</settlement>
<orgName>
<li>Université de Princeton</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Amini, Sasan" sort="Amini, Sasan" uniqKey="Amini S" first="Sasan" last="Amini">Sasan Amini</name>
<name sortKey="Botstein, David" sort="Botstein, David" uniqKey="Botstein D" first="David" last="Botstein">David Botstein</name>
</noCountry>
<country name="États-Unis">
<region name="New Jersey">
<name sortKey="Boer, Viktor M" sort="Boer, Viktor M" uniqKey="Boer V" first="Viktor M" last="Boer">Viktor M. Boer</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001622 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001622 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18456835
   |texte=   Influence of genotype and nutrition on survival and metabolism of starving yeast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18456835" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020